Decarbonized Grid Evolution

Michael Pesin
Deputy Assistant Secretary, Advanced Grid Research and Development
Office of Electricity
The Office of the Grid

Electricity Delivery System

Office of Electricity

“The Office of the Grid”

Bulk Electricity Generation

Loads and Distributed Generation
The electric power system is undergoing a dramatic structural transformation. The electric grid, a vast complex machine, will require significant re-engineering.

The electric grid consists of multiple, interrelated structures: the physical, cyber, market, industry, and regulatory structures.
Problem Statement

Our ability to transform the electric grid to meet resilience, decarbonization, and equity goals will require a coordinated strategy that does not exist today

- Technological breakthroughs plus advances in system designs* are needed to enable envisioned future requirements.
- There is no central authority for exerting a consistent path for advancing the electricity delivery system, as current planning approaches are fragmented.
- Staged, “least-regrets” strategies for applying advanced grid capabilities/designs for incorporation into investment decisions made by regulators, utilities, and technology developers are needed, but do not exist.
- Formal approaches for incorporating resilience, decarbonization, and equity into utility planning processes do not exist.
- Leadership is needed to set guidelines for planning, market designs, and operational coordination within and across regions of the country and jurisdictions.

* For example, significant gaps remain in our understanding of how to model, simulate, and control systems with millions of intelligent fast-responding inverters
Grid Trajectory Considerations

Grid Trajectory Considerations

Capital Intensive
- Economies of scale
- Large-Scale Generation, High-Voltage AC/DC Grids + Storage
- Rigidity/Britleness

Tight Coupling
- Agile/Flexible
- High DER + Complex Industry Structure

Capital Diffuse
- Network economies
- Microgrids are a key part of the future Electric Delivery System, enabling more decentralization and DER integration
 - Current DER wave: PV, smart buildings
 - Next DER wave: energy storage, EVs, IoT

Next-Generation Electricity Network
- Control of flexible generation and load
- Energy storage
- Synthetic inertia
- Multi-directional power flow
- Varied/variable grid configuration

Strengthening the seam between the Eastern and Western Interconnections to encourage efficient development and utilization of U.S. energy resources.
Thank You

Michael Pesin - Deputy Assistant Secretary
U.S. Department of Energy, Office of Electricity,
Advanced Grid Research & Development