8,000+
Employees
75 global / 45 U.S.
locations
Reston, VA HQ

2,000+
Energy and grants
management
Professionals

50+
years of
energy work

State energy
security plan
support for
7 states

Climate and clean
energy plans in 10
states

Services include:
• Energy assurance planning
• Stakeholder engagement/outreach
• Climate action and clean
energy planning
• GHG inventories and
energy assessments
• Economic, health, and
equity analysis
• Energy and GHG modeling
• Climate risk assessments

AMERICA’S BEST MANAGEMENT CONSULTING FIRMS

THE BEST EMPLOYERS FOR DIVERSITY
ICF’s approach to developing state energy security plans

Baseline
- Develop energy landscape
- Stakeholder engagement
- Evaluate existing plans and conduct research

Developing Plan
- Document roles, authorities and response
- Conduct risk assessment
 - Critical infrastructure
 - Outage consequences
 - Alternative sources
- Identify operational gaps
- Identify mitigation opportunities
- Update plan continually with stakeholder input

Key Elements
- Identify threats and hazards
 - Cyber and physical
- Identify mitigation opportunities
 - Critical infrastructure
 - Outage consequences
 - Alternative sources
Stakeholders

- Department of Energy
- FBI
- CISA
- TSA
- PHMSA
- National Guard
- ISACs

- Electric Utilities
- Natural Gas Utilities
- Petroleum Terminals
- Pipeline Operators
- Refiners

- State Emergency Management Agency
- Public Utilities Commission
- DOT, DOH, DEP

- Governor’s Office, especially if there is a Cybersecurity point of contact
- State fusion center
- State Police
Stakeholder questions

Threats/Hazards

- What are the key threats and hazards impacting energy systems in the state?
- Are there any specific infrastructure that are uniquely vulnerable in the state?
- Are any regions or communities of the state that are uniquely vulnerable?
- Understand timelines for repair and replacement activities. (Crew shortage, transformer supply issues, etc.)
- Understanding energy asset ability to continue operations if OT/IT offline?

Communication/Coordination

- Discuss your emergency response plan. Are different stakeholders engaged if it is a cyber or physical event?
- Do you participate in regional planning or response? (Other states, utility mutual aid)
- What formal event reporting requirements, if any, are you subject to at the state level?

Response

- What resources do you have available to deploy during events? What resources can you request from other stakeholders?
- What regulatory waivers can you grant (or request)? (HOS waivers, RVP, etc.)

Mitigation

- What mitigation activities do you have underway (or identified as next steps) for critical energy infrastructure?
Cyber and physical impacts come in many forms

- FBI Thwarts Targeted Plot To Attack Maryland’s Electrical Substations
- FBI investigating damage to substation for Keystone Pipeline
- Hackers stole data from multiple electric utilities in recent ransomware attack
- Hackers Breached Colonial Pipeline Using Compromised Password
- Car hits pole, takes down power lines during early morning crash in Northeast Philadelphia
- Four substations attacked in Washington state, leaving thousands without power
- U.S. regulator releases report blaming Freeport LNG blast on inadequate processes
- North Carolina power outages could last days after shooting attacks on substations
- Enbridge briefly shut Line 5 after protesters tampered with pipeline
Cybersecurity threats and impact

Exhibit 7: Examples of Cyber Threats to the Liquid Fuel Supply Chain

- Targeting sensors for temperature, pressure and other indicators could cause equipment damage, leaks, explosions and unsafe conditions for employees.
- Manipulation of pump station control systems and sensors could lead to alteration of product flow, ruptures and loss of product.
- IT business processes monitoring pipeline flows are targeted, companies lose visibility into pipeline flows and will likely shut line.
- Overriding terminal control systems and sensors could cause ruptures and leaks.
- Targeting payment systems could halt retail station transactions.

A cyberattack resulting in widespread power outages could disrupt operations for refineries, pipelines, terminals and end users. For example, a power outage at a refinery that disrupts cooling water or steam generation could damage equipment, shut down processes and create unsafe conditions. Manipulation of power plant sensors or other generation infrastructure could damage equipment and cause a power plant to go offline.

A ransomware or other IT attack on company headquarters or data servers could limit ability to access and/or keep private company data, complete financial transactions, access internal company software or maintain a public-facing website. Attacks on IT infrastructure may result in the company proactively shutting down physical infrastructure.
Risk assessment

Threat exposure
- Likelihood of event occurring
- Location

Vulnerability
- Factor to account for potential event impact

Consequence
- Asset importance
- Alternative supply
Mitigation options to consider and/or fund

<table>
<thead>
<tr>
<th>State</th>
<th>Industry</th>
<th>Federal</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Requiring utilities to submit cyber resilience plans to the PSC or</td>
<td>• Increasing redundancy of electricity systems</td>
<td>• Funding opportunities</td>
</tr>
<tr>
<td>PUC (E.g., Maryland)</td>
<td>• Coordinating with other utilities for mutual assistance and agreements to share transformers,</td>
<td>• Establishing standards and regulatory requirement (TSA cybersecurity requirements for</td>
</tr>
<tr>
<td></td>
<td>etc., if needed</td>
<td>pipelines; NERC CIP-014 for physical security and multiple CIPs for cybersecurity)</td>
</tr>
<tr>
<td>• Increasing penalties for physical attacks on energy infrastructure:</td>
<td>• Contracting private companies to increase cyber security/evaluate cyber resilience</td>
<td>• Facilitating information sharing between private sector and/or states on threats</td>
</tr>
<tr>
<td>North Carolina, South Carolina, Arizona</td>
<td>• Collaborating with other utilities on cyber resilience and sharing best practices</td>
<td>• Assisting with threat assessment</td>
</tr>
<tr>
<td>• Conducting cyber and physical exercises</td>
<td>• Applying for grants for mitigation funding</td>
<td></td>
</tr>
<tr>
<td>• Sharing best practices</td>
<td>• Conducting exercises</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Upgrading security operations centers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hardening transmission infrastructure, including perimeter fencing, electronic monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equipment, and improved access control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Testing new equipment to assess potential and cost-to-benefit tradeoff</td>
<td></td>
</tr>
</tbody>
</table>
Summary: SEO’s Role in Energy Sector Cyber and Physical Security

- Threat information sharing
- Understanding energy sector vulnerabilities
- Preparing for/responding to event consequences
- Risk mitigation planning
Questions?

Get in touch:

Matt Kelly
Director, Energy Markets, ICF
Matt.Kelly@icf.com

About ICF

ICF (NASDAQ:ICFI) is a global consulting and digital services company with over 8,000 full- and part-time employees, but we are not your typical consultants. At ICF, business analysts and policy specialists work together with digital strategists, data scientists and creatives. We combine unmatched industry expertise with cutting-edge engagement capabilities to help organizations solve their most complex challenges. Since 1969, public and private sector clients have worked with ICF to navigate change and shape the future.