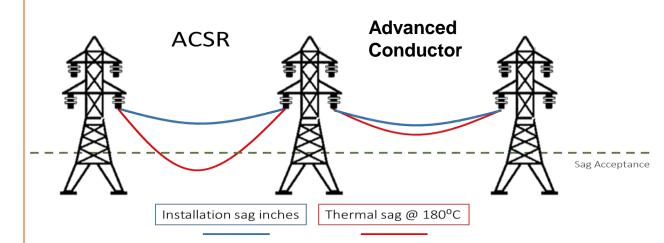

Advanced Reconductoring as a First Step Grid Capacity Expansion

Reconductoring with Advanced Conductors on Existing Structures



Advanced Conductors – Designed for Performance

Advanced vs. Conventional

- Replace steel and hard aluminum with carbon and annealed aluminum
- More aluminum that is more efficient equals:
 - 2x capacity capability
 - More efficient (~30% lower resistance)
- Much lower thermal expansion means 50% less thermal sag
- Corrosion resistant

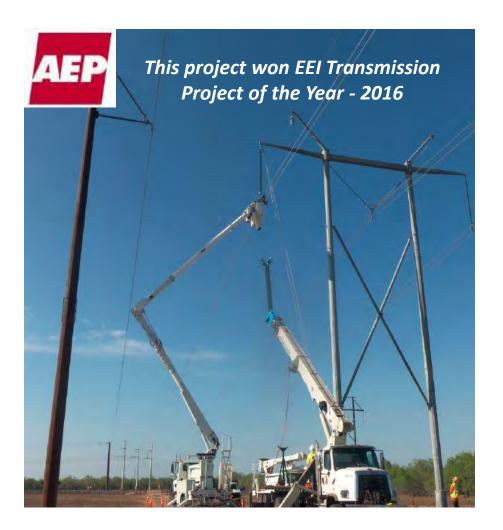
Less Sag

- Less sag means smaller towers or fewer towers
- Less sag means wildfire risk mitigation

Why Advanced Reconductor?

Increase Transmission Capacity

Reduce Transmission Line Losses (Increase Efficiency)


Increase Ground / Vegetation Clearance (Decrease Sag)

- Wildfire Mitigation
- Wildfire Resilience

• Future Proof (the Opposite of Gold Plating...)

AEP Energized Reconductor Project Example

Objectives

- Improve reliability (less sag and corrosion)
- Increased capacity to serve growth (65% uprate achieved)
- Retain existing structures to reduce costs
- Eliminate downtime with Live Reconductoring

Solution

- replace 1,440 miles of ACSR conductor with Advanced Conductor (ACCC[®]) w/ live reconductor solution
- 240 circuit miles, 345 kV line, double bundle

Additional Benefits

- Reduced line losses by 30%
 - Saving \$15 million/yr. (300,000 MWh at \$50)
 - Reducing CO₂ emissions by ~200,000 metric tons per year (= 43,000 cars off the road)
 - Freeing up ~34 MW of generation
 - Saving 3.5 billion gallons of water/yr. (avoided 12k gal/MWh that would have been consumed in fossil-fuel steam power plants to produce the energy saved)

ACCC® Conductor Fire Storm Resilience

2009: ACCC[®] Conductor installed to increase the capacity of existing 120 kV transmission line from Reno to Carson City from 350 amps to 1,000 amps.

2012: wildfire burned down four wood H-frames structures dropping the ACCC® Conductor to the ground. The damaged structures were replaced and the undamaged ACCC® Conductor was lifted back into service. RESILIENCE.

ACCC® Conductor Tornado Resilience

2006

Oklahoma Gas & Electric: ACCC[®] Conductor was installed to connect new generator to the grid.

2013

EF-5 Tornado hit Moore, Oklahoma. Tornado picked up empty shipping container and threw it into a transmission powerline steel monopole.

Damage

The shock and tension on the powerline shredded the aluminum conductor, but the carbon-composite core was NOT broken.

Result

Because the core survived and kept the conductor in the air, the bucket crew was able to splice the conductor and return the powerline to service after only a few hours.

Avoided Potential Delay in Powerline Restoration

Thank You

Address CTC Global Corporation 2026 McGaw Avenue

Irvine, CA 92614 **Email** PBrehm@CTCGlobal.com

@

Contact Number 509-727-7200 m