Gas Technologies for Residential and Commercial Consumers

DANIEL S. LEFEVER
Senior Development Leader
T: 847-544-3458 M: 443-758-5129
daniel.lefevers@gastechnology.org
GTI Overview

ESTABLISHED 1941

> Independent, not-for-profit established by the natural gas industry

> Providing natural gas research, development and technology deployment services to industry and government clients

> Performing contract research, program management, consulting, and training

> Wellhead to the burner tip including energy conversion technologies

Our Staff

292 EMPLOYEES

60% SCIENTISTS/ENGINEERS

44% ADVANCED DEGREES
Residential Customer and Per Home Natural Gas Use Trends

Energy efficiency programs having a positive impact.

Total number of natural gas homes up nearly 50% since 1980.

Average consumer using 30% less natural gas compared to 1980.

Source: DOE-EIA
Comparison of Source Efficiencies Delivered to Customers (%)

Electricity
- Extraction, Processing & Transportation: 100%
- Conversion: 95%
- Distribution*: 34%
- Delivered to Customer: 32%

*Based on 2007 actual generation mix of all energy sources

Natural Gas
- Extraction, Processing & Transportation: 100%
- Conversion: 93%
- Distribution: 92%

Source: American Gas Association
Source Energy Use Reduction by Increased Natural Gas End Use

> Efficient direct use of natural gas can significantly reduce full-fuel-cycle energy consumption compared to electric resistance technologies

> Natural gas end use technologies uniquely positioned for long term societal benefits
 — Low life-cycle costs to consumers
 — High source energy efficiency
 — Low carbon emissions
 — Energy security
 — Domestic employment
 — Compatible with renewable methane
GTI End-Use Product Development & Commercialization Process

ETP helps companies assess the benefits of new energy efficiency products and integrated solutions for use in near- to mid-term energy efficiency program implementation.

Established in 2012

SMP builds a strong technology base for new technologies, product concepts, and related solutions through the “proof of concept” stage for gas utility members and their customers.

Established in 1985

UTD and its 16 members serve over 24 million natural gas consumers in the U.S. and Canada. These companies work together on technology developments that meet their end-use customer energy efficiency and environmental needs.

Established in 2004
GTI’s Energy Utilization RD&D Program

Five Areas of Focus for Efficient, Clean Uses of Natural Gas

| Highly Efficient Appliances (Including over 100% efficiency) | • Combination Space/Water Heating Systems
• Gas Heat Pumps (Space Conditioning, Water Heating)
• Ventilation, Indoor Air Quality
• Commercial Foodservice |
|---|---|
| Efficient, Clean Industrial Processes | • Efficient, low NOx Boilers
• Advanced Process Heating
• Heat Recovery Systems
• Process Controls and Sensors |
| Combined Heat & Power | • Integrated Commercial/Industrial CHP Systems
• Micro CHP Systems |
| NGVs, Hydrogen, and Alternative Vehicles | • Ultra-Clean, Efficient HD NGVs and NGV Storage
• NGV Fuel Stations, Home Fueling
• Hydrogen Fuel Cells, H₂ Fueling |
| Renewable Energy | • Solar Thermal/Natural Gas Hybrid Systems
• Bio-Methane Production, Clean-Up, and Use |
GTI Residential and Commercial RD&D Program

> Building energy efficiency technologies
 ─ New appliance technology for hot water and space conditioning
 ─ Commercial food service technology
 ─ Solar thermal/natural gas hybrid systems
 ─ Distributed generation/CHP
Residential ‘Low-Load’ Heating: One Size Does Not Fit All

- **Combined Space and Water Systems**
 - Improves utility/customer value proposition for water heating by piggy-backing on larger space heating load.
 - Equipment, system specification, operation, and load profiles all have significant impact on energy savings potential.
 - Market development and training critical, new construction likely first significant market entry point

- **Through wall packaged heating, cooling systems**
 - Systems represent growing portion of multi-family market
 - Manufacturers are beginning to roll out condensing options
 - Barriers exist related to codes and standards, as well as practical matters such as condensate management and compliance with voluntary programs (e.g. ENERGY STAR)

- **Low capacity ‘right-sized’ furnace**
 - Low capacity high AFUE furnaces with full modulation, very small footprint, quiet operation, variable speed blowers, and high efficiency cooling
 - 15,000-30,000 Btu/hr modulating down to 6,000 Btu/hr
 - Ideal for multi-family with 2.5 inch supply ducts
Thru-the-wall Furnace/AC

<table>
<thead>
<tr>
<th>Company</th>
<th>“Thru-the-Wall” HVAC Product Line</th>
<th>Condensing Offering</th>
</tr>
</thead>
</table>

> Four of five top makers offer condensing…but…

> …issues with code/standard & voluntary requirements

 – AFUE vs. TE ratings
 – Companion AC SEER levels
 – Condensate disposal access to sanitary sewer
 – Condensate neutralization of acidic content
 – ENERGY STAR Quality Installation duct loss/ft²
Combined Space & Water Heater Systems

- **Technology**
 - Air handling unit and tankless water heater combined in pre-engineered applications to create opportunities for market potential and energy efficiency in residential applications.

- **Savings Potential**
 - >10% whole house energy savings
 - Savings vary based on system design, sizing, air handler, and other factors

GTI Activity
- GTI has several ongoing or recently completed demos, pilots with SoCal Gas, Nicor Gas, NYSERDA, and UTD.
Low Capacity Gas Furnace

Technology
- Low capacity high AFUE furnaces with
 - Full modulation
 - Very small footprint and quiet
 - Variable speed blowers
 - High efficiency cooling
- 15,000-30,000 Btu/hr
- Accommodates 2.5 inch supply ducts

GTI Activity
- Commissioning, installation, duct distribution system, thermostat requirements, and benchmark energy use compared to alternative or traditional system focus
- Develop market strategies for local markets -HVAC, builder coordination, issues with installing and sealing ducts.

MARKET SITUATION

Baseline
- Standard, single stage gas furnace

Opportunity
- Energy efficiency: natural gas and electricity savings
- Market potential: retrofit existing systems and for new installations

Segment
- Residential
- New construction and retrofits

Status
- Technology process is mature and readily available

Next Steps
- Third party verification of benefits and market analysis
Gas Heat Pump Hot Water Heater

Baseline
- Traditional domestic hot water technologies

Opportunity
- Energy efficiency: natural gas, customer cost savings
- Market potential: retrofit existing systems and for new installations

Segment
- Residential and commercial
- New construction and retrofits

Status
- Pre-commercial technology, currently being deployed across multiple residential applications.
- Expected 2017 commercialization.

Next Steps
- Continued field verification, technology enhancements based on measured performance, market development

Technology
- Gas Heat Pump Water Heaters may provide a new way to use existing absorption technologies to maximize energy savings potential for domestic hot water use in homes and in light commercial applications.

Savings Potential
- Energy Factor of **1.3**, much higher than baseline technology at 0.6-0.65

ETP Review
- Stone Mountain Technologies Inc. (SMTI) led the initial R&D with support from GTI, Major OEMs and Georgia Tech.
- Six site field evaluation just completed in Southeast and Pacific Northwest, focusing on seasonal performance, heating system interaction, end user satisfaction, and contractor education.
- Currently performing reliability tests and work with OEM on enhancements based on field testing, lab testing, and to align with OEM design preferences.
- Commercialization expected for 2017, working with key members to drive agenda and scope.

Barriers
- Anticipated unit cost 2-3x conventional minimum efficiency system (similar cost to EHPWH)
- Use of Ammonia, a hazardous refrigerant
- The heat pump itself is a sealed system, not intended for servicing (like EHPWHs). The entire heat pump needs to be replaced at end of life.
- Installers need additional education as this installation crosses trades between plumbing and HVAC/refrigeration, like the EHPWH.
- Due to lower recharge timing, heat pumps systems require a larger storage tank and the 60-80 gallon tank may require a two person install.
Gas Heat Pump Space Heating

> Partnership with SMTI, GTI, and Lochinvar with financial support from USDOE

> Using lessons learned, team has scaled up low-cost, single-effect system to Gas Heat Pump (GHP) for space heating in cold climate

> System COP target of 1.4 at 32°F. Cold climate payback target of 3 years vs. min. eff. furnace.

> GHP will be equivalent to a 80,000 Btu/hr output hydronic boiler, with 3:1 turndown and outdoor installation.

> Capable to couple with storage tank for gas heat pump combi-system.

> Prototypes tested at GTI in psychrometric chamber down to -13°F.

> Currently installing at early-stage field sites in Johnson City, Tennessee funded by NEEA
Commercial Food Service Equipment

- Saving energy
- Improving product quality
- Raising productivity rates
Whole Restaurant Example

Energy Consumption and Cost

<table>
<thead>
<tr>
<th></th>
<th>Annual Site Consumption</th>
<th>Annual Source Consumption</th>
<th>Annual Energy Cost ($)</th>
<th>Lifetime Energy Cost ($)</th>
<th>Cost Savings Electric to Gas (%)</th>
<th>Annual Savings Electric to Gas ($)</th>
<th>Lifetime Savings Electric to Gas ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Electric</td>
<td>138,944 kWh</td>
<td>1,683 MMBtu</td>
<td>$12,824.53</td>
<td>$153,894.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Gas</td>
<td>11,706 therm</td>
<td>1,280 MMBtu</td>
<td>$11,706.00</td>
<td>$140,472.00</td>
<td>8.72 %</td>
<td>$1,118.53</td>
<td>$13,422.38</td>
</tr>
<tr>
<td>All Efficient Gas</td>
<td>4,543 therm</td>
<td>497 MMBtu</td>
<td>$4,543.00</td>
<td>$54,516.00</td>
<td>64.58 %</td>
<td>$8,281.53</td>
<td>$99,378.38</td>
</tr>
</tbody>
</table>

Annual Source Energy Consumption

- **All Electric**: 1,683 MMBtu
- **All Gas**: 1,280 MMBtu
- **All Efficient Gas**: 497 MMBtu

Annual Energy Cost

- **All Electric**: $12,825
- **All Gas**: $11,706
- **All Efficient Gas**: $4,543
Commercial Foodservice Developments

Commercial Wok
Conveyor Oven
Commercial Range

Convection Oven
Rethermalizer
Fryers

Restaurant Industry Sales (In Billions of Current Dollars)

- 2014: $683.4
- 2010: $586.7
- 2000: $379.0
- 1990: $239.3
- 1980: $119.6
- 1970: $42.8

"projected"
Renewables: Solar Thermal/Natural Gas Hybrid Systems

> Push to over 100% efficiency using hybrid solar thermal/natural gas energy solutions

> Reduced-cost for hot water and hydronic systems

> Higher-temperature concentrated solar thermal for steam generation, absorption cooling
 – Commercial buildings
 – Industrial plants
 – Hospitals, Universities

Samuel Billings Center—Charlotte, NC
In collaboration with UTD and Piedmont Gas
Natural gas/solar thermal hybrid system using 5 solar thermal arrays and tankless water heaters
Higher-Temperature Solar Thermal Collector

> Higher-temperature solar thermal array
 — Can generate over 400°F at 50% solar capture efficiency
 — Use for steam, process heat, absorption cooling

> Uses External Concentrating Parabolic Collectors (XCPC) Technology
 — Artic Solar
Current Micro-CHP Activity

> **M-Trigen**: Performance testing in lab (propane)
> **Yanmar**: Finishing up field demo in NY
> **EC Power**: Will be testing in lab and field in CA
> **AO Smith**: Future testing in lab and field in NY
> **Qnergy/ITC**: ARPAe Stirling combustion system
> Continuing to vet technologies (**iGEN** is the latest)
> **SPC 204 ASHRAE mCHP standards development**
> Working toward EPA/CARB certification capability
AO Smith/Briggs & Stratton Micro-CHP

> Major US manufacturers in the hot water and engine industries with networks of installers and trainers to drive market acceptance

> 21kW with synchronous generator and black start-capable without an inverter

> Hot water thermally-led system

> Designed for easy install; “all-in-one box”

> NYSERDA funded project demonstration starting this year

> AOS championing an 8-site USDOE-supported demonstration of larger non-synchronous 30kW system
 > In partnership with another major engine manufacturer
Summary

> Natural gas technologies are a very low carbon and low energy cost option for consumers

> Natural gas technologies continue to become more energy efficient, can integrate with renewables and align well with today’s efficient building envelopes

> Challenges still exist with customer and contractor acceptance with newly designed natural gas technologies
 > Customers, contractors and codes and standards officials need to be further educated
 > Continued R&D and technology demonstrations are needed to address these issues leading to highly efficient natural gas technologies providing low cost, low carbon comfort and performance for consumers